RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. All Inkjet-Printed Graphene-Silver Composite Ink on Textiles for Highly Conductive Wearable Electronics Applications

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2019

All Inkjet-Printed Graphene-Silver Composite Ink on Textiles for Highly Conductive Wearable Electronics Applications

0 Datasets

0 Files

English
2019
Scientific Reports
Vol 9 (1)
DOI: 10.1038/s41598-019-44420-y

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Konstantin ‘kostya’  Novoselov
Konstantin ‘kostya’ Novoselov

The University of Manchester

Verified
Nazmul Karim
Shaila Afroj
Sirui Tan
+2 more

Abstract

Inkjet-printed wearable electronic textiles (e-textiles) are considered to be very promising due to excellent processing and environmental benefits offered by digital fabrication technique. Inkjet-printing of conductive metallic inks such as silver (Ag) nanoparticles (NPs) are well-established and that of graphene-based inks is of great interest due to multi-functional properties of graphene. However, poor ink stability at higher graphene concentration and the cost associated with the higher Ag loading in metal inks have limited their wider use. Moreover, graphene-based e-textiles reported so far are mainly based on graphene derivatives such as graphene oxide (GO) or reduced graphene oxide (rGO), which suffers from poor electrical conductivity. Here we report inkjet printing of highly conductive and cost-effective graphene-Ag composite ink for wearable e-textiles applications. The composite inks were formulated, characterised and inkjet-printed onto PEL paper first and then sintered at 150 °C for 1 hr. The sheet resistance of the printed patterns is found to be in the range of ~0.08-4.74 Ω/sq depending on the number of print layers and the graphene-Ag ratio in the formulation. The optimised composite ink was then successfully printed onto surface pre-treated (by inkjet printing) cotton fabrics in order to produce all-inkjet-printed highly conductive and cost-effective electronic textiles.

How to cite this publication

Nazmul Karim, Shaila Afroj, Sirui Tan, Konstantin ‘kostya’ Novoselov, Stephen G. Yeates (2019). All Inkjet-Printed Graphene-Silver Composite Ink on Textiles for Highly Conductive Wearable Electronics Applications. Scientific Reports, 9(1), DOI: 10.1038/s41598-019-44420-y.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2019

Authors

5

Datasets

0

Total Files

0

Language

English

Journal

Scientific Reports

DOI

10.1038/s41598-019-44420-y

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access