0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessSegmented all-electron relativistically contracted (SARC) basis sets are constructed for the elements 57La-71Lu and optimized for density functional theory (DFT) applications. The basis sets are intended for use in combination with the DKH2 or ZORA scalar relativistic Hamiltonians for which individually optimized contractions are provided. Significant computational advantages can be realized owing to the loose contraction of the SARC basis sets compared to generally contracted basis sets, while their compact size allows them to replace effective core potentials for routine studies of lanthanide complexes. The new basis sets are evaluated in DFT calculations of the first four ionization energies of the lanthanides. They yield results that accurately reproduce the experimental trends, confirming a balanced treatment of different electronic configurations. The performance of the basis sets is further assessed in molecular systems with a comprehensive study of the lanthanide trihalides. Despite their compact size, the SARC basis sets demonstrate consistent, efficient, and reliable performance and will be especially useful in calculations of molecular properties that require explicit treatment of the core electrons.
Dimitrios A. Pantazis, Frank Neese (2009). All-Electron Scalar Relativistic Basis Sets for the Lanthanides. Journal of Chemical Theory and Computation, 5(9), pp. 2229-2238, DOI: 10.1021/ct900090f.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2009
Authors
2
Datasets
0
Total Files
0
Language
English
Journal
Journal of Chemical Theory and Computation
DOI
10.1021/ct900090f
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access