0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAeolian dust exerts a considerable influence on atmospheric and oceanic conditions negatively impacting human health, particularly in arid and semi-arid regions like Saudi Arabia. Aeolian dust is often characterized by its mineral and chemical composition; however, there is a microbiological component of natural aerosols that has received comparatively little attention. Moreover, the amount of materials suspended in the atmosphere is highly variable from day to day. Thus, understanding the variability of atmospheric dust loads and suspended microbes throughout the year is essential to clarify the possible effects of dust on the Red Sea ecosystem. Here, we present the first estimates of dust and microbial loads at a coastal site on the Red Sea over a 2-year period, supplemented with measurements from dust samples collected along the Red Sea basin in offshore waters. Weekly average dust loads from a coastal site on the Red Sea ranged from 4.6 to 646.11 μg m-3, while the abundance of airborne prokaryotic cells and viral-like particles (VLPs) ranged from 77,967 to 1,203,792 cells m-3 and from 69,615 to 3,104,758 particles m-3, respectively. To the best of our knowledge, these are the first estimates of airborne microbial abundance in this region. The elevated concentrations of resuspended dust particles and suspended microbes found in the air indicate that airborne microbes may potentially have a large impact on human health and on the Red Sea ecosystem.
Razan Z. Yahya, Jesús M. Arrieta, Michael Cusack, Carlos M. Duarte (2019). Airborne Prokaryote and Virus Abundance Over the Red Sea. , 10, DOI: https://doi.org/10.3389/fmicb.2019.01112.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2019
Authors
4
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.3389/fmicb.2019.01112
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access