RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Advances in One-Pot Synthesis through Borrowing Hydrogen Catalysis

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2018

Advances in One-Pot Synthesis through Borrowing Hydrogen Catalysis

0 Datasets

0 Files

English
2018
Chemical Reviews
Vol 118 (4)
DOI: 10.1021/acs.chemrev.7b00340

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Avelino Avelino
Avelino Avelino

Instituto de Tecnología Química

Verified
Avelino Avelino
Javier Navas
María J. Sabater

Abstract

The borrowing hydrogen (BH) principle, also called hydrogen auto-transfer, is a powerful approach which combines transfer hydrogenation (avoiding the direct use of molecular hydrogen) with one or more intermediate reactions to synthesize more complex molecules without the need for tedious separation or isolation processes. The strategy which usually relies on three steps, (i) dehydrogenation, (ii) intermediate reaction, and (iii) hydrogenation, is an excellent and well-recognized process from the synthetic, economic, and environmental point of view. In this context, the objective of the present review is to give a global overview on the topic starting from those contributions published prior to the emergence of the BH concept to the most recent and current research under the term of BH catalysis. Two main subareas of the topic (homogeneous and heterogeneous catalysis) have been identified, from which three subheadings based on the source of the electrophile (alkanes, alcohols, and amines) have been considered. Then the type of bond being formed (carbon–carbon and carbon heteroatom) has been taken into account to end-up with the intermediate reaction working in tandem with the metal-catalyzed hydrogenation/dehydrogenation step. The review has been completed with the more recent advances in asymmetric catalysis using the BH strategy.

How to cite this publication

Avelino Avelino, Javier Navas, María J. Sabater (2018). Advances in One-Pot Synthesis through Borrowing Hydrogen Catalysis. Chemical Reviews, 118(4), pp. 1410-1459, DOI: 10.1021/acs.chemrev.7b00340.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2018

Authors

3

Datasets

0

Total Files

0

Language

English

Journal

Chemical Reviews

DOI

10.1021/acs.chemrev.7b00340

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access