RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Admission Control in 5G Networks for the Coexistence of eMBB-URLLC Users

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2020

Admission Control in 5G Networks for the Coexistence of eMBB-URLLC Users

0 Datasets

0 Files

English
2020
DOI: 10.1109/vtc2020-spring48590.2020.9129141

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Matti Latva-aho
Matti Latva-aho

University Of Oulu

Verified
Nipuni Ginige
K. B. Shashika Manosha
Nandana Rajatheva
+1 more

Abstract

In this paper, we consider the problem of admission control in 5G networks where enhanced mobile broadband (eMBB) users and ultra-reliable low-latency communication (URLLC) users are coexisting. URLLC users require low latency and high reliability while eMBB users require high data rates. Thus, it is essential to control the admission of eMBB users while giving priority to all URLLC users in a network where both types of users are coexisting. Our aim is to maximize the number of admitted eMBB users to the system with a guaranteed data rate while allocating resources to all URLLC users. We formulated this as an l <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> minimization problem. Since it is an NP-hard problem we have used approximation methods and sequential convex programming to obtain a suboptimal solution. Numerically we have shown that the proposed algorithm achieves near-optimal performance. Our algorithm is able to maximize the number of admitted eMBB users with an optimal allocation of resources while giving priority to all URLLC users.

How to cite this publication

Nipuni Ginige, K. B. Shashika Manosha, Nandana Rajatheva, Matti Latva-aho (2020). Admission Control in 5G Networks for the Coexistence of eMBB-URLLC Users. , DOI: 10.1109/vtc2020-spring48590.2020.9129141.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2020

Authors

4

Datasets

0

Total Files

0

Language

English

DOI

10.1109/vtc2020-spring48590.2020.9129141

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access