RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Addition of iron to agricultural topsoil and subsoil is not an effective C sequestration strategy

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2021

Addition of iron to agricultural topsoil and subsoil is not an effective C sequestration strategy

0 Datasets

0 Files

English
2021
Geoderma
Vol 409
DOI: 10.1016/j.geoderma.2021.115646

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Davey L Jones
Davey L Jones

Bangor University

Verified
Erik S. Button
David R. Chadwick
Davey L Jones

Abstract

The interaction of soil organic matter (SOM) with Fe-containing minerals represents a key mechanism that promotes carbon (C) stabilisation in soil. The addition of Fe-rich industrial by-products to soil may therefore help accelerate C storage. Our understanding of the effects of exogenous Fe addition (Fe (oxy)hydroxide vs. Fe chloride) on SOM dynamics and C dynamics in agricultural soils, especially in subsoils, however, remains poor. Here, we simulate the addition of Fe in an arable soil context and assess its effectiveness based on CO2 emissions and soil chemistry. We hypothesised that insoluble and soluble Fe would reduce the mineralization of newly added unprotected organic materials more than native SOM and that soluble Fe would cause mineralisation of native SOM. To investigate this, insoluble Fe(OH)3 or soluble FeCl2 (0–5 g kg−1) were added to arable top- (0–10 cm) or subsoils (50–60 cm) and CO2 emissions, pH and nutrient dynamics (e.g. P, N) measured in a laboratory incubation over a 45 d period. We also compared the effect of Fe on the turnover of native SOM and newly added C (i.e. 14C-labelled glucose, citrate and crop residues) which was pre-mixed with exogenous Fe. We found that: (1) despite a reduction in P and DOC, Fe(OH)3 did not suppress total CO2 efflux; (2) high FeCl2 rates induced a rapid and significant release of CO2, which we attribute almost entirely to FeCl2-induced soil acidification increasing DOC availability and carbonate dissolution; (3) 14C-substrate mineralisation was weakly suppressed by Fe(OH)3 but strongly by FeCl2 following the series: citrate < glucose < crop residues; and (4) Fe addition to subsoils induced a stronger C mineralisation response but weaker effect on soil solution chemistry compared to topsoil, possibly due to subsoils having a lower buffering ability and less microbial biomass. We conclude that addition of extra Fe was not effective in promoting greater C sequestration in the arable soil we tested.

How to cite this publication

Erik S. Button, David R. Chadwick, Davey L Jones (2021). Addition of iron to agricultural topsoil and subsoil is not an effective C sequestration strategy. Geoderma, 409, pp. 115646-115646, DOI: 10.1016/j.geoderma.2021.115646.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2021

Authors

3

Datasets

0

Total Files

0

Language

English

Journal

Geoderma

DOI

10.1016/j.geoderma.2021.115646

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access