RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Adaptive Neural Network-Quantized Tracking Control of Uncertain Unmanned Surface Vehicles With Output Constraints

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2023

Adaptive Neural Network-Quantized Tracking Control of Uncertain Unmanned Surface Vehicles With Output Constraints

0 Datasets

0 Files

English
2023
IEEE Transactions on Intelligent Vehicles
Vol 9 (2)
DOI: 10.1109/tiv.2023.3331905

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Guanrong Chen
Guanrong Chen

City University Of Hong Kong

Verified
Shanling Dong
Kaixuan Liu
Meiqin Liu
+2 more

Abstract

This paper investigates the trajectory tracking control problem for a class of unmanned surface vehicles subject to unknown uncertainties, output constraints and input quantization. Adaptive neural networks (NNs) are applied to handle the uncertainties and quantization while output-dependent universal barrier functions are used to cope with output constraints. Due to limited communication bandwidths, the uniform quantizer is used to quantize input signals before being sent. Based on state feedback, an adaptive NN-based control strategy is proposed to solve the tracking problem with time-invariant output constraints, and then another NN-based control law is developed to deal with the time-varying output constraints. It is proved that the desired output constraints can be achieved and the tracking errors can converge to zero asymptotically. Further, the proposed control law is extended to the case without output constraints. Finally, simulation results are presented to demonstrate the effectiveness of the new control strategies.

How to cite this publication

Shanling Dong, Kaixuan Liu, Meiqin Liu, Guanrong Chen, Tingwen Huang (2023). Adaptive Neural Network-Quantized Tracking Control of Uncertain Unmanned Surface Vehicles With Output Constraints. IEEE Transactions on Intelligent Vehicles, 9(2), pp. 3293-3304, DOI: 10.1109/tiv.2023.3331905.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2023

Authors

5

Datasets

0

Total Files

0

Language

English

Journal

IEEE Transactions on Intelligent Vehicles

DOI

10.1109/tiv.2023.3331905

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access