0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract Robots that can move, feel, and respond like organisms will bring revolutionary impact to today's technologies. Soft robots with organism‐like adaptive bodies have shown great potential in vast robot–human and robot–environment applications. Developing skin‐like sensory devices allows them to naturally sense and interact with environment. Also, it would be better if the capabilities to feel can be active, like real skin. However, challenges in the complicated structures, incompatible moduli, poor stretchability and sensitivity, large driving voltage, and power dissipation hinder applicability of conventional technologies. Here, various actively perceivable and responsive soft robots are enabled by self‐powered active triboelectric robotic skins (tribo‐skins) that simultaneously possess excellent stretchability and excellent sensitivity in the low‐pressure regime. The tribo‐skins can actively sense proximity, contact, and pressure to external stimuli via self‐generating electricity. The driving energy comes from a natural triboelectrification effect involving the cooperation of contact electrification and electrostatic induction. The perfect integration of the tribo‐skins and soft actuators enables soft robots to perform various actively sensing and interactive tasks including actively perceiving their muscle motions, working states, textile's dampness, and even subtle human physiological signals. Moreover, the self‐generating signals can drive optoelectronic devices for visual communication and be processed for diverse sophisticated uses.
Ying‐Chih Lai, Jianan Deng, Ruiyuan Liu, Yung‐Chi Hsiao, Steven L. Zhang, Wenbo Peng, Hsing‐Mei Wu, Xingfu Wang, Zhong Lin Wang (2018). Actively Perceiving and Responsive Soft Robots Enabled by Self‐Powered, Highly Extensible, and Highly Sensitive Triboelectric Proximity‐ and Pressure‐Sensing Skins. , 30(28), DOI: https://doi.org/10.1002/adma.201801114.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2018
Authors
9
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1002/adma.201801114
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access