0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessBayesian inference typically focuses upon two issues. The first is estimating the parameters of some model from data, and the second is quantifying the evidence for alternative hypotheses—formulated as alternative models. This paper focuses upon a third issue. Our interest is in the selection of data—either through sampling subsets of data from a large dataset or through optimising experimental design—based upon the models we have of how those data are generated. Optimising data-selection ensures we can achieve good inference with fewer data, saving on computational and experimental costs. This paper aims to unpack the principles of active sampling of data by drawing from neurobiological research on animal exploration and from the theory of optimal experimental design. We offer an overview of the salient points from these fields and illustrate their application in simple toy examples, ranging from function approximation with basis sets to inference about processes that evolve over time. Finally, we consider how this approach to data selection could be applied to the design of (Bayes-adaptive) clinical trials.
Thomas Parr, Karl Friston, Peter Zeidman (2024). Active Data Selection and Information Seeking. , 17(3), DOI: https://doi.org/10.3390/a17030118.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
3
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.3390/a17030118
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access