0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessBackground Anti-oxidant capacity is crucial defence against environmental or endogenous oxidative stress. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a redox-sensitive transcription factor that plays a key defensive role against oxidative and cytotoxic stress and cellular senescence. However, Nrf2 signalling is impaired in several aging-related diseases, such as chronic pulmonary obstructive disease (COPD), cancer, and neurodegenerative diseases. Thus, novel therapeutics that enhance Nrf2 signalling are an attractive approach to treat these diseases. Methodology/Principal Findings Nrf2 was stabilized by SKI-II (2-(p-hydroxyanilino)-4-(p-chlorophenyl) thiazole), which is a known sphingosine kinase inhibitor, in human bronchial epithelial cell line, BEAS2B, and in primary human bronchial epithelial cells, leading to enhancement of anti-oxidant proteins, such as HO-1, NQO1 and GCLM. The activation of Nrf2 was achieved by the generation of inactive dimerized form of Keap1, a negative regulator of Nrf2 expression, which was independent of sphingosine kinase inhibition. Using mice that were exposed to cigarette smoke, SKI-II induced Nrf2 expression together with HO-1 in their lungs. In addition, SKI-II reduced cigarette smoke mediated oxidative stress, macrophages and neutrophil infiltration and markers of inflammation in mice. Conclusions/Significance SKI-II appears to be a novel activator of Nrf2 signalling via the inactivation of Keap1.
Nicolas Mercado, Yasuo Kizawa, Keitaro Ueda, Yeping Xiong, Genki Kimura, Audric S. Moses, Jonathan M. Curtis, Kazuhiro Ito, Peter J Barnes (2014). Activation of Transcription Factor Nrf2 Signalling by the Sphingosine Kinase Inhibitor SKI-II Is Mediated by the Formation of Keap1 Dimers. , 9(2), DOI: https://doi.org/10.1371/journal.pone.0088168.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2014
Authors
9
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1371/journal.pone.0088168
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access