0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessUrban Green Infrastructure (GI) provides multiple benefits to city inhabitants and can be an important component in nature-based solutions (NBS), but the ecosystem services that underpin those benefits are inconsistently quantified in the literature. There remain substantial knowledge gaps about the level of service supported by less studied GI types, e.g. cemeteries, or less-studied ecosystem services, e.g. noise mitigation. Decision-makers and planners in cities often face conflicting or incomplete information on the effectiveness of GI, particularly on their ability to provide a suite of co-benefits. Here, we describe a feature-based typology of GI which combines elements of land cover, land use and both ecological and social function. It is consistent with user requirements on mapping, and with the needs of models which can conduct more detailed ecosystem service assessments which can guide NBS design. We provide an evidence synthesis based on published literature, which scores the ability of each GI type to deliver a suite of ecosystem services. In the multivariate analysis of the typology scores, the main axis of variation differentiates between constructed (or hybrid) GI types designed primarily for water flow management (delivering relatively few services) and more natural green GI with trees, or blue GI such as lakes and the sea, which deliver a more multi-functional set of regulating services. The most multi-functional GI on this axis also score highest for biodiversity. The second element of variation separates those GI which support very few cultural services and those which score highly in enabling physical wellbeing and social interaction and, to a lesser extent, restoring capacities. Together the typology and multi-functionality matrix provide a much needed assessment for less studied GI types, and allow planners and decision-makers to make a-priori assessments of the relative ability of different GI as part of NBS to address urban challenges.
Laurence Jones, Sally Anderson, Jeppe Læssøe, Ellen Banzhaf, Anne Jensen, David Neil Bird, James D. Miller, Michael Hutchins, Jun Yang, Joanne K. Garrett, Tim Taylor, Benedict W. Wheeler, Rebecca Lovell, David Fletcher, Yueming Qu, Massimo Vieno, Marianne Zandersen (2022). A typology for urban Green Infrastructure to guide multifunctional planning of nature-based solutions. , 2, DOI: https://doi.org/10.1016/j.nbsj.2022.100041.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2022
Authors
17
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1016/j.nbsj.2022.100041
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access