0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIntelligent reflecting surface (IRS) has emerged as a key enabling technology to realize smart and reconfigurable radio environment for wireless communications, by digitally controlling the signal reflection via a large number of passive reflecting elements in real time. Different from conventional wireless communication techniques that only adapt to but have no or limited control over dynamic wireless channels, IRS provides a new and cost-effective means to combat the wireless channel impairments in a proactive manner. However, despite its great potential, IRS faces new and unique challenges in its efficient integration into wireless communication systems, especially its channel estimation and passive beamforming design under various practical hardware constraints. In this paper, we provide a comprehensive survey on the up-to-date research in IRS-aided wireless communications, with an emphasis on the promising solutions to tackle practical design issues. Furthermore, we discuss new and emerging IRS architectures and applications as well as their practical design problems to motivate future research.
Beixiong Zheng, Changsheng You, Weidong Mei, Rui Zhang (2022). A Survey on Channel Estimation and Practical Passive Beamforming Design for Intelligent Reflecting Surface Aided Wireless Communications. IEEE Communications Surveys & Tutorials, 24(2), pp. 1035-1071, DOI: 10.1109/comst.2022.3155305.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2022
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
IEEE Communications Surveys & Tutorials
DOI
10.1109/comst.2022.3155305
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access