0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessA class of phenomenological strain gradient plasticity theories is formulated to accommodate more than one material length parameter. The objective is a generalization of the classical J 2 flow theory of plasticity to account for strain gradient effects that emerge in deformation phenomena at the micron scale. A special case involves a single length parameter and is of similar form to that proposed by Aifantis and co-workers. Distinct computational advantages are associated with this class of theories that make them attractive for applications requiring the generation of numerical solutions. The higher-order nature of the theories is emphasized, involving both higher-order stresses and additional boundary conditions. Competing members in the class of theories will be examined in light of experimental data on wire torsion, sheet bending, indentation and other micron scale plasticity phenomena. The data strongly suggest that at least two distinct material length parameters must be introduced in any phenomenological gradient plasticity theory, one parameter characterizing problems for which stretch gradients are dominant and the other relevant to problems when rotation gradients (or shearing gradients) are controlling. Flow and deformation theory versions of the theory are highlighted that can accommodate multiple length parameters. Examination of several basic problems reveals that the new formulations predict quantitatively similar plastic behavior to the theory proposed earlier by the present authors. The new formulations improve on the earlier theory in the manner in which elastic and plastic strains are decomposed and in the representation of behavior in the elastic range.
N.A. Fleck, John W. Hutchinson (2001). A reformulation of strain gradient plasticity. Journal of the Mechanics and Physics of Solids, 49(10), pp. 2245-2271, DOI: 10.1016/s0022-5096(01)00049-7.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2001
Authors
2
Datasets
0
Total Files
0
Language
English
Journal
Journal of the Mechanics and Physics of Solids
DOI
10.1016/s0022-5096(01)00049-7
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access