RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. A perturbation‐based super‐CI approach for the orbital optimization of a CASSCF wave function

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2019

A perturbation‐based super‐CI approach for the orbital optimization of a CASSCF wave function

0 Datasets

0 Files

English
2019
Journal of Computational Chemistry
Vol 40 (14)
DOI: 10.1002/jcc.25801

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Frank Neese
Frank Neese

Max Planck

Verified
Christian Kollmar
Kantharuban Sivalingam
Benjamin Helmich‐Paris
+2 more

Abstract

A perturbation theory-based algorithm for the iterative orbital update in complete active space self-consistent-field (CASSCF) calculations is presented. Following Angeli et al. (J. Chem. Phys. 2002, 117, 10525), the first-order contribution of singly excited configurations to the CASSCF wave function is evaluated using the Dyall Hamiltonian for the determination of a zeroth-order Hamiltonian. These authors employ an iterative diagonalization of the first-order density matrix including the first-order correction arising from single excitations, whereas the present approach uses the single-excitation amplitudes directly for the construction of the exponential of an anti-Hermitian matrix resulting in a unitary matrix which can be used for the orbital update. At convergence, the single-excitation amplitudes vanish as a consequence of the generalized Brillouin's theorem. It is shown that this approach in combination with direct inversion of the iterative subspace (DIIS) leads to very rapid convergence of the CASSCF iteration procedure. © 2019 Wiley Periodicals, Inc.

How to cite this publication

Christian Kollmar, Kantharuban Sivalingam, Benjamin Helmich‐Paris, Celestino Angeli, Frank Neese (2019). A perturbation‐based super‐CI approach for the orbital optimization of a CASSCF wave function. Journal of Computational Chemistry, 40(14), pp. 1463-1470, DOI: 10.1002/jcc.25801.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2019

Authors

5

Datasets

0

Total Files

0

Language

English

Journal

Journal of Computational Chemistry

DOI

10.1002/jcc.25801

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access