RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. A novel vibration-induced exercise paradigm improves fitness and lipid metabolism of Caenorhabditis elegans

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2018

A novel vibration-induced exercise paradigm improves fitness and lipid metabolism of Caenorhabditis elegans

0 Datasets

0 Files

en
2018
Vol 8 (1)
Vol. 8
DOI: 10.1038/s41598-018-27330-3

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Barry Halliwell
Barry Halliwell

National University of Singapore

Verified
Emelyne Teo
Krishna Chaithanya Batchu
Diogo Barardo
+6 more

Abstract

Abstract Exercise has been known to reduce the risk of obesity and metabolic syndrome, but the mechanisms underlying many exercise benefits remain unclear. This is, in part, due to a lack of exercise paradigms in invertebrate model organisms that would allow rapid mechanistic studies to be conducted. Here we report a novel exercise paradigm in Caenorhabditis elegans (C. elegans) that can be implemented under standard laboratory conditions. Mechanical stimulus in the form of vibration was transduced to C. elegans grown on solid agar media using an acoustic actuator. One day post-exercise, the exercised animals showed greater physical fitness compared to the un-exercised controls. Despite having higher mitochondrial reactive oxygen species levels, no mitohormetic adaptations and lifespan extension were observed in the exercised animals. Nonetheless, exercised animals showed lower triacylglycerides (TAG) accumulation than the controls. Among the individual TAG species, the most significant changes were found in mono- and polyunsaturated fatty acid residues. Such alteration resulted in an overall lower double bond index and peroxidation index which measure susceptibility towards lipid peroxidation. These observations are consistent with findings from mammalian exercise literature, suggesting that exercise benefits are largely conserved across different animal models.

How to cite this publication

Emelyne Teo, Krishna Chaithanya Batchu, Diogo Barardo, Linfan Xiao, Amaury Cazenave‐Gassiot, Nicholas S. Tolwinski, Markus R. Wenk, Barry Halliwell, Jan Gruber (2018). A novel vibration-induced exercise paradigm improves fitness and lipid metabolism of Caenorhabditis elegans. , 8(1), DOI: https://doi.org/10.1038/s41598-018-27330-3.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2018

Authors

9

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1038/s41598-018-27330-3

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access