0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis study investigates the influence of climate variables (pressure, relative humidity, temperature and wind speed) in inducing risk due to COVID 19 at rural, urban and total (rural and urban) population scale in 623 pandemic affected districts of India incorporating the socioeconomic vulnerability factors. We employed nonstationary extreme value analysis to model the different quantiles of cumulative COVID 19 cases in the districts by using climatic factors as covariates. Wind speed was the most dominating climatic factor followed by relative humidity, pressure, and temperature in the evolution of the cases. The results reveal that stationarity, i.e., the COVID 19 cases which are independent of pressure, relative humidity, temperature and wind speed, existed only in 148 (23.7%) out of 623 districts. Whereas, strong nonstationarity, i.e., climate dependence, was detected in the cases of 474 (76.08%) districts. 334 (53.6%), 200 (32.1%) and 336 (53.9%) districts out of 623 districts were at high risk (or above) at rural, urban and total population scales respectively. 19 out of 35 states were observed to be under high (or above) Kerala, Maharashtra, Goa and Delhi being the most risked ones. The study provides high-risk maps of COVID 19 pandemic at the district level and is aimed at supporting the decision-makers to identify climatic and socioeconomic factors in augmenting the risks.
Srinidhi Jha, Manish Kumar Goyal, Brij B. Gupta, Anil K. Gupta (2021). A novel analysis of COVID 19 risk in India incorporating climatic and socioeconomic Factors. Technological Forecasting and Social Change, 167, pp. 120679-120679, DOI: 10.1016/j.techfore.2021.120679.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2021
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
Technological Forecasting and Social Change
DOI
10.1016/j.techfore.2021.120679
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access