0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIsolation and stabilization of main group diradical species have posed a synthetic challenge over the years due to their intrinsic high reactivity. Herein we report on a large-scale synthesis and isolation of a mono-coordinate bismuthinidene featuring a rigid and bulky ligand, which protects the Bi(I) center. The compound was characterized by its unique spectroscopic features (UV-vis and NMR), but more prominently, by its magnetic properties. Multiconfigurational quantum chemical calculations predict the ground state of the compound to be dominated by a spin-triplet. Further support for this electronic structure description was obtained through correlation of theory to experimental XRD, XAS, and UV-Vis data. However, all magnetic measurements (EPR, NMR and SQUID) point to a diamagnetic compound. This apparent discrepancy can be explained by an extremely large spin-orbit coupling (SOC) that leads to an unprecedented zero-field splitting of more than 8000 cm‒1, thus leaving a MS = 0 magnetic sublevel thermally isolated in the electronic ground state. The extremely large SOC effect is a result of the low-coordination number of the bismuth center in interplay with its heavy element nature.
Yue Pang, Nils Nöthling, Markus Leutzsch, Liqun Kang, Eckhard Bill, Maurice van Gastel, Edward J. Reijerse, Richard Goddard, Lucas Wagner, Daniel J. SantaLucia, Serena DeBeer, Frank Neese, Josep Cornellà (2022). A “non-magnetic” triplet bismuthinidene enabled by relativity. , DOI: 10.26434/chemrxiv-2022-d3jl7.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Preprint
Year
2022
Authors
13
Datasets
0
Total Files
0
Language
English
DOI
10.26434/chemrxiv-2022-d3jl7
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access