0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe design resistance in shear of thin-walled I-sections has elicited numerous theories over the past decades. While there is a consensus on the post-buckling tension-field action that increases the ultimate resistance of thin webs in shear, the mechanism governing this tension-field action still remains debated. Presently, four constituent components for the shear resistance of I-sections are identified: (1) the resistance of the isolated web subject to a pure shear stress; (2) an increase in the web buckling stress due to flexural restraints provided by the flanges; (3) an increased web post-buckling resistance due to membrane restraint provided by the flanges; and (4) a direct contribution from the flanges to the shear resistance of the I-section. Each of these components is examined through parametric studies using finite element (FE) models analysed within Abaqus that are validated against published experimental results. A new design methodology for the resistance of I-sections in shear is presented, with closed-form expressions developed for each of the four component contributions. When compared with the current approach within EN 1993-1-5, the proposed formulae predict the shear resistance of the cross-section with greater accuracy and consistency.
Luke Lapira, Leroy Gardner, Ahmer Wadee (2024). A new model for calculating the ultimate shear resistance of steel I-section girders. , 200, DOI: https://doi.org/10.1016/j.tws.2024.111908.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
3
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1016/j.tws.2024.111908
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access