RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. A new model for calculating the ultimate shear resistance of steel I-section girders

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2024

A new model for calculating the ultimate shear resistance of steel I-section girders

0 Datasets

0 Files

en
2024
Vol 200
Vol. 200
DOI: 10.1016/j.tws.2024.111908

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Ahmer Wadee
Ahmer Wadee

Institution not specified

Verified
Luke Lapira
Leroy Gardner
Ahmer Wadee

Abstract

The design resistance in shear of thin-walled I-sections has elicited numerous theories over the past decades. While there is a consensus on the post-buckling tension-field action that increases the ultimate resistance of thin webs in shear, the mechanism governing this tension-field action still remains debated. Presently, four constituent components for the shear resistance of I-sections are identified: (1) the resistance of the isolated web subject to a pure shear stress; (2) an increase in the web buckling stress due to flexural restraints provided by the flanges; (3) an increased web post-buckling resistance due to membrane restraint provided by the flanges; and (4) a direct contribution from the flanges to the shear resistance of the I-section. Each of these components is examined through parametric studies using finite element (FE) models analysed within Abaqus that are validated against published experimental results. A new design methodology for the resistance of I-sections in shear is presented, with closed-form expressions developed for each of the four component contributions. When compared with the current approach within EN 1993-1-5, the proposed formulae predict the shear resistance of the cross-section with greater accuracy and consistency.

How to cite this publication

Luke Lapira, Leroy Gardner, Ahmer Wadee (2024). A new model for calculating the ultimate shear resistance of steel I-section girders. , 200, DOI: https://doi.org/10.1016/j.tws.2024.111908.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2024

Authors

3

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1016/j.tws.2024.111908

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access