RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. A New Microporous Zeolitic Silicoborate (ITQ-52) with Interconnected Small and Medium Pores

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2014

A New Microporous Zeolitic Silicoborate (ITQ-52) with Interconnected Small and Medium Pores

0 Datasets

0 Files

English
2014
Journal of the American Chemical Society
Vol 136 (9)
DOI: 10.1021/ja411915c

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Avelino Avelino
Avelino Avelino

Instituto de Tecnología Química

Verified
Raquel Simancas
J.L. Jordá
Fernando Rey
+4 more

Abstract

A new zeolite (named as ITQ-52) having large cavities and small and medium channels has been synthesized. This was achieved by using a new family of amino-phosphonium cations as organic structure directing agents (OSDA). These cations contain P–C and P–N bonds, and therefore they lie between previously reported P-containing OSDA, such as tetraalkylphosphonium and phosphazenes. In this study, it has been found that 1,4-butanediylbis[tris(dimethylamino)]phosphonium dication is a very efficient OSDA for crystallization of several zeolites, and in some particular conditions, the new zeolite ITQ-52 was synthesized as a pure phase. The structure of ITQ-52 has been solved using high-resolution synchrotron X-ray powder diffraction data of the calcined solid. This new zeolite crystallizes in the space group I2/m, with cell parameters a = 17.511 Å, b = 17.907 Å, c = 12.367 Å, and β = 90.22°. The topology of ITQ-52 can be described as a replication of a composite building unit with ring notation [435461] that gives rise to the formation of an interconnected 8R and 10R channel system.

How to cite this publication

Raquel Simancas, J.L. Jordá, Fernando Rey, Avelino Avelino, Ángel Cantı́n, Inma Peral, Cătălin Popescu (2014). A New Microporous Zeolitic Silicoborate (ITQ-52) with Interconnected Small and Medium Pores. Journal of the American Chemical Society, 136(9), pp. 3342-3345, DOI: 10.1021/ja411915c.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2014

Authors

7

Datasets

0

Total Files

0

Language

English

Journal

Journal of the American Chemical Society

DOI

10.1021/ja411915c

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access