RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. A New Interpretable Learning Method for Fault Diagnosis of Rolling Bearings

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2020

A New Interpretable Learning Method for Fault Diagnosis of Rolling Bearings

0 Datasets

0 Files

English
2020
IEEE Transactions on Instrumentation and Measurement
Vol 70
DOI: 10.1109/tim.2020.3043873

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Hamid Reza Karimi
Hamid Reza Karimi

Politecnico di Milano

Verified
Dan Zhang
Yongyi Chen
Fanghong Guo
+3 more

Abstract

In modern manufacturing processes, requirements for automatic fault diagnosis have been growing increasingly as it plays a vitally important role in the reliability and safety of industrial facilities. Rolling bearing systems represent a critical part in most of the industrial applications. In view of the strong environmental noise in the working environment of rolling bearing, its vibration signals have nonstationary and nonlinear characteristics, and those features are difficult to be extracted. In this article, we proposed a new intelligent fault diagnosis method for rolling bearing with unlabeled data by using the convolutional neural network (CNN) and fuzzy $C$ -means (FCM) clustering algorithm. CNN is first utilized to automatically extract features from rolling bearing vibration signals. Then, the principal component analysis (PCA) technique is used to reduce the dimension of the extracted features, and the first two principal components are selected as the fault feature vectors. Finally, the FCM algorithm is introduced to cluster those rolling bearing data in the derived feature space and identify the different fault types of rolling bearing. The results indicate that the newly proposed fault diagnosis method can achieve higher accuracy than other existing results in the literature.

How to cite this publication

Dan Zhang, Yongyi Chen, Fanghong Guo, Hamid Reza Karimi, Hui Dong, Qi Xuan (2020). A New Interpretable Learning Method for Fault Diagnosis of Rolling Bearings. IEEE Transactions on Instrumentation and Measurement, 70, pp. 1-10, DOI: 10.1109/tim.2020.3043873.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2020

Authors

6

Datasets

0

Total Files

0

Language

English

Journal

IEEE Transactions on Instrumentation and Measurement

DOI

10.1109/tim.2020.3043873

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access