RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. A naturally occurring epiallele associates with leaf senescence and local climate adaptation in Arabidopsis accessions

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2018

A naturally occurring epiallele associates with leaf senescence and local climate adaptation in Arabidopsis accessions

0 Datasets

0 Files

en
2018
Vol 9 (1)
Vol. 9
DOI: 10.1038/s41467-018-02839-3

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Jian Kang Zhu
Jian Kang Zhu

Institution not specified

Verified
Li He
Wenwu Wu
Gaurav Zinta
+8 more

Abstract

Abstract Epigenetic variation has been proposed to facilitate adaptation to changing environments, but evidence that natural epialleles contribute to adaptive evolution has been lacking. Here we identify a retrotransposon, named “NMR19” (naturally occurring DNA methylation variation region 19), whose methylation and genomic location vary among Arabidopsis thaliana accessions. We classify NMR19 as NMR19-4 and NMR19-16 based on its location, and uncover NMR19-4 as an epiallele that controls leaf senescence by regulating the expression of PHEOPHYTIN PHEOPHORBIDE HYDROLASE ( PPH ). We find that the DNA methylation status of NMR19-4 is stably inherited and independent of genetic variation. In addition, further analysis indicates that DNA methylation of NMR19-4 correlates with local climates, implying that NMR19-4 is an environmentally associated epiallele. In summary, we discover a novel epiallele, and provide mechanistic insights into its origin and potential function in local climate adaptation.

How to cite this publication

Li He, Wenwu Wu, Gaurav Zinta, Lan Yang, Dong Wang, Renyi Liu, Huiming Zhang, Zhimin Zheng, Huan Huang, Qingzhu Zhang, Jian Kang Zhu (2018). A naturally occurring epiallele associates with leaf senescence and local climate adaptation in Arabidopsis accessions. , 9(1), DOI: https://doi.org/10.1038/s41467-018-02839-3.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2018

Authors

11

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1038/s41467-018-02839-3

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access