0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessNanoparticles of gold on TiO2 are highly chemoselective for the reduction of substituted nitroaromatics, such as nitrostyrene. By combining kinetics and in situ IR spectroscopy, it has been found that there is a preferential adsorption of the reactant on the catalyst through the nitro group. IR studies of nitrobenzene, styrene, and nitrostyrene adsorption, together with quantum chemical calculations, show that the nitro and the olefinic groups adsorb weakly on the Au(111) and Au(001) surfaces, and that although a stronger adsorption occurs on low-coordinated atoms in gold nanoparticles, this adsorption is not selective. On the other hand, an energetically and geometrically favored adsorption through the nitro group occurs on the TiO2 support and in the interface between the gold nanoparticle and the TiO2 support. Such preferential adsorption is not observed with nanoparticles of gold on silica which, contrary to the Au/TiO2 catalyst, is not chemoselective for the reduction of substituted nitroaromatic compounds. Therefore, the high chemoselectiviy of the Au/TiO2 catalyst can be attributed to a cooperation between the gold nanoparticle and the support that preferentially activates the nitro group.
Mercè Boronat, Patricia Concepción, Avelino Avelino, Silvia González, Francesc Illas, Pedro Serna (2007). A Molecular Mechanism for the Chemoselective Hydrogenation of Substituted Nitroaromatics with Nanoparticles of Gold on TiO<sub>2</sub> Catalysts: A Cooperative Effect between Gold and the Support. Journal of the American Chemical Society, 129(51), pp. 16230-16237, DOI: 10.1021/ja076721g.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2007
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
Journal of the American Chemical Society
DOI
10.1021/ja076721g
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access