0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIn the context of consciousness studies, a key challenge is how to rigorously conceptualise first-person phenomenological descriptions of lived experience and their relation to third-person empirical measurements of the activity or dynamics of the brain and body. Since the 1990s, there has been a coordinated effort to explicitly combine first-person phenomenological methods, generating qualitative data, with neuroscientific techniques used to describe and quantify brain activity under the banner of "neurophenomenology". Here, we take on this challenge and develop an approach to neurophenomenology from a mathematical perspective. We harness recent advances in theoretical neuroscience and the physics of cognitive systems to mathematically conceptualise first-person experience and its correspondence with neural and behavioural dynamics. Throughout, we make the operating assumption that the content of first-person experience can be formalised as (or related to) a belief (i.e. a probability distribution) that encodes an organism's best guesses about the state of its external and internal world (e.g. body or brain) as well as its uncertainty. We mathematically characterise phenomenology, bringing to light a tool-set to quantify individual phenomenological differences and develop several hypotheses including on the metabolic cost of phenomenology and on the subjective experience of time. We conceptualise the form of the generative passages between first- and third-person descriptions, and the mathematical apparatus that mutually constrains them, as well as future research directions. In summary, we formalise and characterise first-person subjective experience and its correspondence with third-person empirical measurements of brain and body, offering hypotheses for quantifying various aspects of phenomenology to be tested in future work.
Lancelot Da Costa, Lars Sandved-Smith, Karl Friston, Maxwell J. D. Ramstead, Anil C. Seth (2024). A Mathematical Perspective on Neurophenomenology. , DOI: https://doi.org/10.48550/arxiv.2409.20318.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Preprint
Year
2024
Authors
5
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.48550/arxiv.2409.20318
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access