0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessA Mahalanobis hyperellipsoidal learning machine class incremental learning algorithm is proposed. To each class sample, the hyperellipsoidal that encloses as many as possible and pushes the outlier samples away is trained in the feature space. In the process of incremental learning, only one subclassifier is trained with the new class samples. The old models of the classifier are not influenced and can be reused. In the process of classification, considering the information of sample’s distribution in the feature space, the Mahalanobis distances from the sample mapping to the center of each hyperellipsoidal are used to decide the classified sample class. The experimental results show that the proposed method has higher classification precision and classification speed.
Yuping Qin, Hamid Reza Karimi, Dan Li, Shuxian Lun, Aihua Zhang (2014). A Mahalanobis Hyperellipsoidal Learning Machine Class Incremental Learning Algorithm. Abstract and Applied Analysis, 2014, pp. 1-5, DOI: 10.1155/2014/894246.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2014
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
Abstract and Applied Analysis
DOI
10.1155/2014/894246
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access