RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. A Lamellar MWW Zeolite With Silicon and Niobium Oxide Pillars: A Catalyst for the Oxidation of Volatile Organic Compounds

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2020

A Lamellar MWW Zeolite With Silicon and Niobium Oxide Pillars: A Catalyst for the Oxidation of Volatile Organic Compounds

0 Datasets

0 Files

English
2020
Chemistry - A European Journal
Vol 26 (46)
DOI: 10.1002/chem.202000862

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Avelino Avelino
Avelino Avelino

Instituto de Tecnología Química

Verified
Anderson Joel Schwanke
Rosana Balzer
Christian W. Lopes
+4 more

Abstract

In this work, an MWW-type zeolite with pillars containing silicon and niobium oxide was synthesized to obtain a hierarchical zeolite. The effect of niobium insertion in the pillaring process was determined by combining a controllable acidity and accessibility in the final material. All pillared materials had niobium occupying framework positions in pillars and extra-framework positions. The pillared material, Pil-Nb-4.5 with 4.5 wt % niobium, did not compromise the mesoporosity formed by pillaring, while the increase of niobium in the structure gradually decreased the mesoporosity and ordering of lamellar stacking. The morphology of the pillared zeolites and the niobium content were found to directly affect the catalytic activity. Specifically, we report on the activity of the MWW-type zeolites with niobium catalyzing the gas-phase oxidation of volatile organic compounds (VOCs), which is an important reaction for clean environmental. All produced MWW-type zeolites with niobium were catalytically active, even at low temperatures and low niobium loading, and provided excellent conversion efficiencies.

How to cite this publication

Anderson Joel Schwanke, Rosana Balzer, Christian W. Lopes, Débora Motta Meira, Urbano Díaz, Avelino Avelino, Sibele B. C. Pergher (2020). A Lamellar MWW Zeolite With Silicon and Niobium Oxide Pillars: A Catalyst for the Oxidation of Volatile Organic Compounds. Chemistry - A European Journal, 26(46), pp. 10459-10470, DOI: 10.1002/chem.202000862.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2020

Authors

7

Datasets

0

Total Files

0

Language

English

Journal

Chemistry - A European Journal

DOI

10.1002/chem.202000862

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access