0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessA microfiber‐nanowire hybrid structure is the fundamental component for a wearable piezoelectric nanogenerator (PENG) for harvesting body motion energy. Here, a novel approach combining surface coating and plasma etching techniques is reported to enhance the mechanical reliability of Kevlar microfiber‐ZnO nanowires (NWs) hybrid structure that is used for PENG. After treatment, the hybrid structure has dramatically improved high flexibility, robustness, and durability. On the basis of the coupled piezoelectric and semiconducting properties of ZnO, the processed Kevlar fibers covered with ZnO NWs are utilized to fabricate a 2D nanogenerator (2DNG). The open‐circuit voltage and short‐circuit current of the 2DNG are 1.8 mV and 4.8 pA, respectively. Furthermore, the 2DNG is successfully employed to quantitatively detect UV intensity from 0.2 to 1 mW cm −2 as a self‐powered system.
Lu Zhang, Suo Bai, Chen Su, Youbin Zheng, Yong Qin, Chen Xu, Zhong Lin Wang (2015). A High‐Reliability Kevlar Fiber‐ZnO Nanowires Hybrid Nanogenerator and its Application on Self‐Powered UV Detection. , 25(36), DOI: https://doi.org/10.1002/adfm.201502646.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2015
Authors
7
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1002/adfm.201502646
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access