0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract Rapid progress in nanotechnology allows us to develop a large number of innovative wearables such as activity trackers, advanced textiles, and healthcare devices. However, manufacturing processes for desirable nanostructure are usually complex and expensive. Moreover, materials used for these devices are mainly derived from nonrenewable resources. Therefore, it poses growing problems for living environment, and causes incompatible discomfort for human beings with long‐time wearing. Here, a self‐powered cellulose fiber based triboelectric nanogenerator (cf‐TENG) system is presented through developing 1D eco‐friendly cellulose microfibers/nanofibers (CMFs/CNFs) into 2D CMFs/CNFs/Ag hierarchical nanostructure. Silver nanofibers membrane is successfully introduced into the cf‐TENG system by using CMFs/CNFs as template, which shows excellent antibacterial activity. Enabled by its desirable porous nanostructure and unique electricity generation feature, the cf‐TENG system is capable of removing PM 2.5 with high efficiency of 98.83% and monitoring breathing status without using an external power supply. This work provides a novel and sustainable strategy for self‐powered wearable electronics in healthcare applications, and furthermore paves a way for next‐generation flexible, biocompatible electronics.
Xu He, Haiyang Zou, Zhishuai Geng, Xingfu Wang, Wenbo Ding, Fei Hu, Yunlong Zi, Cheng Xu, Steven L. Zhang, Yu Hua, Minyi Xu, Wei Zhang, Canhui Lu, Zhong Lin Wang (2018). A Hierarchically Nanostructured Cellulose Fiber‐Based Triboelectric Nanogenerator for Self‐Powered Healthcare Products. , 28(45), DOI: https://doi.org/10.1002/adfm.201805540.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2018
Authors
14
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1002/adfm.201805540
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access