0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessTo identify chromosomal regions harboring genes influencing the propensity to store fat in the abdominal area, a genome-wide scan for abdominal fat was performed in the Québec Family Study. Cross-sectional areas of the amount of abdominal total fat (ATF) and abdominal visceral fat (AVF) were assessed from a computed tomography scan taken at L4-L5 in 521 adult subjects. Abdominal subcutaneous fat (ASF) was obtained by computing the difference between ATF and AVF. The abdominal fat phenotypes were adjusted for age and sex effects as well as for total amount of body fat (kilogram of fat mass) measured by underwater weighing, and the adjusted phenotypes were used in linkage analyses. A total of 293 microsatellite markers spanning the 22 autosomal chromosomes were typed. The average intermarker distance was 11.9 cM. A maximum of 271 sib-pairs were available for single-point (SIBPAL) and 156 families for multipoint variance components (SEGPATH) linkage analyses. The strongest evidence of linkage was found on chromosome 12q24.3 between marker D12S2078 and ASF (logarithm of odds [LOD] = 2.88). Another marker (D12S1045) located within 2 cM of D12S2078 also provided evidence of sib-pair linkage with ASF (P = 0.019), ATF (P = 0.015), and AVF (P = 0.0007). Other regions with highly suggestive evidence (P < 0.0023 or LOD ≥1.75) of multipoint linkage and evidence (P < 0.05) of single-point linkage, all for ASF, included chromosomes 1p11.2, 4q32.1, 9q22.1, 12q22-q23, and 17q21.1. Three of these loci (1p11.2, 9q22.1, and 17q21.1) are close to genes involved in the regulation of sex steroid levels, whereas two others (4q32.1 and 17q21.1) are in the proximity of genes involved in the regulation of food intake. This first genome-wide scan for abdominal fat assessed by computed tomography indicates that there may be several loci determining the propensity to store fat in the abdominal depot and that some of these loci may influence the development of diabetes in obese subjects.
Louis Pérusse, Treva Rice, Marie‐Christine Chagnon, Jean‐Pierre Després, Simone Lemieux, Sonia Roy, Michel Lacaille, My-Ann Ho-Kim, Marie‐Christine Chagnon, Michael A. Province, D. C. Rao, Claude Bouchard (2001). A Genome-Wide Scan for Abdominal Fat Assessed by Computed Tomography in the Québec Family Study. Diabetes, 50(3), pp. 614-621, DOI: 10.2337/diabetes.50.3.614.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2001
Authors
12
Datasets
0
Total Files
0
Language
English
Journal
Diabetes
DOI
10.2337/diabetes.50.3.614
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access