0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessConverting mechanical energy into direct-current electric power based on the tribovoltaic effect is a typical characteristic of tribovoltaic nanogenerators (TVNGs). Although this newly discovered physics effect has been devoted to numerous research studies recently, a generalized theoretical model is still missing, thus unable to comprehensively elaborate the working principles of TVNG. Unlike previous qualitative explanations restricted to the conventional diffusion-drift theory, a new theoretical model is proposed according to classical semiconductor physics. Using the model, the governing equation of a TVNG is derived for the first time, which provides possibilities for revealing the variations of basic physical variables whether within the device or in an external circuit. The direct-current output is suggested to be the coupling of the tribovoltaic effect and contact electrification; in detail, it directly results from the movement and realignment of quasi-Fermi levels for excess carriers that are contiguous to the junction/contacting interface under non-equilibrium conditions. Moreover, an equivalent circuit model is established, equivalent to a constant current source parallel to a p–n junction diode according to the lumped parameter circuit theory. Notably, a new term, mechano-induced electric field EM, is defined and introduced to describe the impact of triboelectric charges at interfaces. Furthermore, using the COMSOL Multiphysics software, a dynamic simulation model for TVNGs is proposed, allowing the simulation and calculation of various TVNGs with different geometric constructions and charge distributions.
Xin Guo, Jing You, Di Wei, Jiajia Shao, Zhong Lin Wang (2024). A generalized model for tribovoltaic nanogenerator. , 11(2), DOI: https://doi.org/10.1063/5.0196998.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
5
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1063/5.0196998
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access