0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe development of flexible electronic skins with high performance and multifunctional sensing capabilities is of great significance for applications ranging from healthcare monitoring to artificial intelligence. To mimic and surpass the high-gauge-factor sensing properties of human skin, structure design and appropriate material selection of sensors are both essentially required. Here, we present an efficient, low-cost fabrication strategy to construct an ultra-highly sensitive, flexible pressure sensor by embedding the aligned nickel-coated carbon fibers (NICFs) in a polydimethylsiloxane (PDMS) substrate. Our design substantially contributes to ultrahigh sensitivity through the parallel circuit formed by aligned NICFs as well as surface spinosum microstructure molded by sandpaper. As a result, the sensor exhibits excellent sensitivity (15 525 kPa–1), a fast response time (30 ms), and good stability over 3000 loading–unloading cycles. Furthermore, these superior sensing properties trigger applications in water quality and wave monitoring in conjunction with mechanical flexibility and robustness. As a precedent for adjusting the sensitivities of the sensor, the NICFs/PDMS sensor provides a promising method for multiscenario healthcare monitoring, multiscale pressure spatial distribution, and human–machine interfacing.
Yang Jiang, Fei Liang, Hua Yang Li, Xin Li, You Fan, Jinwei Cao, Yi Ming Yin, Ying Wang, Zhong Lin Wang, Guang Zhu (2022). A Flexible and Ultra-Highly Sensitive Tactile Sensor through a Parallel Circuit by a Magnetic Aligned Conductive Composite. , 16(1), DOI: https://doi.org/10.1021/acsnano.1c08273.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2022
Authors
10
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/acsnano.1c08273
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access