0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe age-related decline in organismal fitness results in vulnerability to pathologies and eventual lethal decay. One way to counteract cellular aging and to delay and/or prevent the onset of age-related maladies is the reduction of calorie intake or the institution of fasting regimens. Caloric restriction mimetics (CRMs) have the ability to imitate the health-promoting and lifespan-extending effects of caloric restriction without the need for dietary restriction. CRMs induce an increase in autophagic flux in response to the deacetylation of cellular proteins in the absence of cytotoxicity. Here we report the development of a high-throughput discovery platform for novel CRMs that uses systems biology approaches, in vitro validation and functional tests employing in vivo disease models. This workflow led to the identification of 3,4-dimethoxychalcone (3,4-DC) as a novel CRM that stimulated TFEB (transcription factor EB)- and TFE3 (transcription factor E3)-dependent macroautophagy/autophagy. 3,4-DC showed cardioprotective effects and stimulated anticancer immunosurveillance in the context of immunogenic chemotherapy.
Oliver Kepp, Guo Chen, Didac Carmona‐Gutiérrez, Frank Madeo, Guido Guido Kroemer (2019). A discovery platform for the identification of caloric restriction mimetics with broad health-improving effects. , 16(1), DOI: https://doi.org/10.1080/15548627.2019.1688984.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2019
Authors
5
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1080/15548627.2019.1688984
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access