0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIn situ conversion of mechanical energy into electricity is a feasible solution to satisfy the increasing power demand of the Internet of Things (IoTs). A triboelectric nanogenerator (TENG) is considered as a potential solution via building self-powered systems. Based on the triboelectrification effect and electrostatic induction, a conventional TENG with pulsed AC output characteristics always needs rectification and energy storage units to obtain a constant DC output to drive electronic devices. Here, we report a next-generation TENG, which realizes constant current (crest factor, ~1) output by coupling the triboelectrification effect and electrostatic breakdown. Meanwhile, a triboelectric charge density of 430 mC m-2 is attained, which is much higher than that of a conventional TENG limited by electrostatic breakdown. The novel DC-TENG is demonstrated to power electronics directly. Our findings not only promote the miniaturization of self-powered systems used in IoTs but also provide a paradigm-shifting technique to harvest mechanical energy.
Di Liu, Xing Yin, Hengyu Guo, Linglin Zhou, Xinyuan Li, Chunlei Zhang, Jie Wang, Zhong Lin Wang (2019). A constant current triboelectric nanogenerator arising from electrostatic breakdown. , 5(4), DOI: https://doi.org/10.1126/sciadv.aav6437.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2019
Authors
8
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1126/sciadv.aav6437
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access