RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. A comprehensive framework for assessing the accuracy and uncertainty of global above-ground biomass maps

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2022

A comprehensive framework for assessing the accuracy and uncertainty of global above-ground biomass maps

0 Datasets

0 Files

English
2022
Remote Sensing of Environment
Vol 272
DOI: 10.1016/j.rse.2022.112917

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Dmitry Schepaschenko
Dmitry Schepaschenko

Institution not specified

Verified
Arnan Araza
Sytze de Bruin
Martin Herold
+27 more

Abstract

Over the past decade, several global maps of above-ground biomass (AGB) have been produced, but they exhibit significant differences that reduce their value for climate and carbon cycle modelling, and also for national estimates of forest carbon stocks and their changes. The number of such maps is anticipated to increase because of new satellite missions dedicated to measuring AGB. Objective and consistent methods to estimate the accuracy and uncertainty of AGB maps are therefore urgently needed. This paper develops and demonstrates a framework aimed at achieving this. The framework provides a means to compare AGB maps with AGB estimates from a global collection of National Forest Inventories and research plots that accounts for the uncertainty of plot AGB errors. This uncertainty depends strongly on plot size, and is dominated by the combined errors from tree measurements and allometric models (inter-quartile range of their standard deviation (SD) = 30–151 Mg ha−1). Estimates of sampling errors are also important, especially in the most common case where plots are smaller than map pixels (SD = 16–44 Mg ha−1). Plot uncertainty estimates are used to calculate the minimum-variance linear unbiased estimates of the mean forest AGB when averaged to 0.1∘. These are used to assess four AGB maps: Baccini (2000), GEOCARBON (2008), GlobBiomass (2010) and CCI Biomass (2017). Map bias, estimated using the differences between the plot and 0.1∘ map averages, is modelled using random forest regression driven by variables shown to affect the map estimates. The bias model is particularly sensitive to the map estimate of AGB and tree cover, and exhibits strong regional biases. Variograms indicate that AGB map errors have map-specific spatial correlation up to a range of 50–104 km, which increases the variance of spatially aggregated AGB map estimates compared to when pixel errors are independent. After bias adjustment, total pantropical AGB and its associated SD are derived for the four map epochs. This total becomes closer to the value estimated by the Forest Resources Assessment after every epoch and shows a similar decrease. The framework is applicable to both local and global-scale analysis, and is available at https://github.com/arnanaraza/PlotToMap. Our study therefore constitutes a major step towards improved AGB map validation and improvement.

How to cite this publication

Arnan Araza, Sytze de Bruin, Martin Herold, S. Quegan, Nicolas Labrière, Pedro Rodríguez‐Veiga, Valerio Avitabile, Maurizio Santoro, Edward T. A. Mitchard, Casey M. Ryan, Oliver L. Phillips, Simon Willcock, Hans Verbeeck, João M. B. Carreiras, Lars Hein, M.J. Schelhaas, Ana María Pacheco-Pascagaza, Polyanna da Conceição Bispo, Gaia Vaglio Laurin, Ghislain Vieilledent, Ferry Slik, Arief Wijaya, Simon L. Lewis, A. Morel, Jingjing Liang, Hansrajie Sukhdeo, Dmitry Schepaschenko, Jura Čavlović, Hammad Gilani, Richard Lucas (2022). A comprehensive framework for assessing the accuracy and uncertainty of global above-ground biomass maps. Remote Sensing of Environment, 272, pp. 112917-112917, DOI: 10.1016/j.rse.2022.112917.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2022

Authors

30

Datasets

0

Total Files

0

Language

English

Journal

Remote Sensing of Environment

DOI

10.1016/j.rse.2022.112917

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access