0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessMimicking the comprehensive functions of human sensing via electronic skins (e-skins) is highly interesting for the development of human-machine interactions and artificial intelligences. Some e-skins with high sensitivity and stability were developed; however, little attention is paid to their comfortability, environmental friendliness, and antibacterial activity. Here, we report a breathable, biodegradable, and antibacterial e-skin based on all-nanofiber triboelectric nanogenerators, which is fabricated by sandwiching silver nanowire (Ag NW) between polylactic-co-glycolic acid (PLGA) and polyvinyl alcohol (PVA). With micro-to-nano hierarchical porous structure, the e-skin has high specific surface area for contact electrification and numerous capillary channels for thermal-moisture transfer. Through adjusting the concentration of Ag NW and the selection of PVA and PLGA, the antibacterial and biodegradable capability of e-skins can be tuned, respectively. Our e-skin can achieve real-time and self-powered monitoring of whole-body physiological signal and joint movement. This work provides a previously unexplored strategy for multifunctional e-skins with excellent practicability.
Yapeng Shi, Kai Dong, Cuiying Ye, Yang Jiang, Siyuan Zhai, Renwei Cheng, Di Liu, Xiaoping Gao, Jie Wang, Zhong Lin Wang (2020). A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators. Science Advances, 6(26), pp. 1-10, DOI: 10.1126/sciadv.aba9624.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
10
Datasets
0
Total Files
0
Language
English
Journal
Science Advances
DOI
10.1126/sciadv.aba9624
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access