RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. 6G Fresnel Spot Beamfocusing using Large-Scale Metasurfaces: A Distributed DRL-Based Approach

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2024

6G Fresnel Spot Beamfocusing using Large-Scale Metasurfaces: A Distributed DRL-Based Approach

0 Datasets

0 Files

English
2024
IEEE Transactions on Mobile Computing
Vol 23 (12)
DOI: 10.1109/tmc.2024.3398296

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Matti Latva-aho
Matti Latva-aho

University Of Oulu

Verified
Mehdi Monemi
Mohammad Amir Fallah
Mehdi Rasti
+1 more

Abstract

We propose a novel approach to smart spot-beamforming (SBF) in the Fresnel zone leveraging extremely large-scale programmable metasurfaces (ELPMs). A smart SBF scheme aims to adaptively concentrate the aperture's radiating power exactly at a desired focal point (DFP) in the 3D space utilizing some Machine Learning (ML) method. This offers numerous advantages for next-generation networks including ultra-high-speed wireless communication, location-based multiple access (LDMA), efficient wireless power transfer (WPT), interference mitigation, and improved information security. SBF necessitates ELPMs with precise channel state information (CSI) for all ELPM elements. However, obtaining exact CSI for ELPMs is not feasible in all environments; we alleviate this by developing a novel CSI-independent ML scheme based on the TD3 deep-reinforcement-learning (DRL) method. While the proposed ML-based scheme is well-suited for relatively small-size arrays, the computational complexity is unaffordable for ELPMs. To overcome this limitation, we introduce a modular highly scalable structure composed of multiple sub-arrays, each equipped with a TD3-DRL optimizer. This setup enables collaborative optimization of the radiated power at the DFP, significantly reducing computational complexity while enhancing learning speed. The proposed structure's benefits in terms of 3D spot-like power distribution, convergence rate, and scalability are validated through simulation results.

How to cite this publication

Mehdi Monemi, Mohammad Amir Fallah, Mehdi Rasti, Matti Latva-aho (2024). 6G Fresnel Spot Beamfocusing using Large-Scale Metasurfaces: A Distributed DRL-Based Approach. IEEE Transactions on Mobile Computing, 23(12), pp. 11670-11684, DOI: 10.1109/tmc.2024.3398296.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2024

Authors

4

Datasets

0

Total Files

0

Language

English

Journal

IEEE Transactions on Mobile Computing

DOI

10.1109/tmc.2024.3398296

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access