RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. 3DAEF-Based Thunderstorm Multipath Imaging System

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2023

3DAEF-Based Thunderstorm Multipath Imaging System

0 Datasets

0 Files

en
2023
Vol 23 (11)
Vol. 23
DOI: 10.1109/jsen.2023.3266718

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Hongyan Xing
Hongyan Xing

Institution not specified

Verified
Yang Xu
Hongyan Xing
Xinyuan Ji
+5 more

Abstract

This article presents a multipath imaging system for thunderstorm developments, wherein data are three-dimensional atmospheric electric-field signals (3DAEFSs) collected with a self-made 3DAEF apparatus (3DAEFA). In this way, thunderstorms are presented in a staged and visual form. To start with, entropy-based intervals are constructed from historical AEF data, to classify denoised AEFS components, according to the entropy value of each component. Furthermore, AEFS time sequences are reconstructed with a reference to whether components within the same entropy-based interval are sequential or not, providing time information for the subsequent clustering-based spatial denoising to thunderstorm point charge coordinates. Finally, predicted value (PV) intervals, which are used to divide and then reconstruct AEFS time periods, are acquired to realize the point charge multipath imaging corresponding to periods, based on the established stacked autoencoder and the extreme gradient boosting (SAE-XGBoost) model. Empirical results demonstrate that the multipath better visualizes the whole process of thunderstorm activities. Comparisons with radar charts further confirm that the proposed system effectively images charge multipaths and provides a valid reference for visual thunderstorm monitoring.

How to cite this publication

Yang Xu, Hongyan Xing, Xinyuan Ji, Ting Huang, Chen Zhou, Wenjie Yin, Xin Su, Witold Pedrycz (2023). 3DAEF-Based Thunderstorm Multipath Imaging System. , 23(11), DOI: https://doi.org/10.1109/jsen.2023.3266718.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2023

Authors

8

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1109/jsen.2023.3266718

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access