0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessBackground Bioresorbable vascular scaffolds (BVS) offer the potential to improve long-term outcomes of percutaneous coronary intervention after their complete bioresorption. Randomised trials have shown non-inferiority between BVS and metallic drug-eluting stents at 1 year in composite safety and effectiveness outcomes, although some increases in rates of target vessel-related myocardial infarction and device thrombosis were identified. Outcomes of BVS following the first year after implantation are unknown. We sought to ascertain whether BVS are as safe and effective as drug-eluting stents within 2 years after implantation and between 1 and 2 years. Methods We did a systematic review and meta-analysis of randomised trials in which patients were randomly assigned to everolimus-eluting Absorb BVS or metallic everolimus-eluting stents (EES) and followed up for at least 2 years. We searched MEDLINE, the Cochrane database, TCTMD, ClinicalTrials.gov, Clinical Trial Results, CardioSource, and abstracts and presentations from major cardiovascular meetings up to April 1, 2017, to identify relevant studies. The primary efficacy outcome measure was the device-oriented composite endpoint (cardiac mortality, target vessel-related myocardial infarction, or ischaemia-driven target lesion revascularisation) and the primary safety outcome measure was definite or probable device thrombosis. Individual patient data from the four ABSORB trials were used for landmark and subgroup analysis and multivariable modelling. Findings We identified seven randomised trials in which 5583 patients were randomly assigned to Absorb BVS (n=3261) or metallic EES (n=2322) and followed up for 2 years. BVS had higher 2-year relative risks of the device-oriented composite endpoint than did EES (9·4% [304 of 3217] vs 7·4% [169 of 2299]; relative risk [RR] 1·29 [95% CI 1·08–1·56], p=0·0059). These differences were driven by increased rates of target vessel-related myocardial infarction (5·8% [187 of 3218] vs 3·2% [74 of 2299]; RR 1·68 [95% CI 1·29–2·19], p=0·0003) and ischaemia-driven target lesion revascularisation (5·3% [169 of 3217] vs 3·9% [90 of 2300]; 1·40 [1·09–1·80], p=0·0090) with BVS, with non-significant differences in cardiac mortality. The cumulative 2-year incidence of device thrombosis was higher with BVS than with EES (2·3% [73 of 3187] vs 0·7% [16 of 2281]; RR 3·35 [95% CI 1·96–5·72], p<0·0001). Landmark analysis between 1 and 2 years also showed higher rates of the device-oriented composite endpoint (3·3% [69 of 2100] vs 1·9% [23 of 1193]; RR 1·64 [95% CI 1·03–2·61], p=0·0376) and device thrombosis (0·5% [11 of 2085] vs none [0 of 1183], p<0·0001) in BVS-treated patients than in EES-treated patients. Interpretation BVS was associated with increased rates of composite device-oriented adverse events and device thrombosis cumulatively at 2 years and between 1 and 2 years of follow-up compared with EES. Funding Abbott Vascular.
Ziad A. Ali, Patrick W. Serruys, Takeshi Kimura, Runlin Gao, Stephen G. Ellis, Dean J. Kereiakes, Yoshinobu Onuma, Charles A. Simonton, Zhen Zhang, Gregg W. Stone (2017). 2-year outcomes with the Absorb bioresorbable scaffold for treatment of coronary artery disease: a systematic review and meta-analysis of seven randomised trials with an individual patient data substudy. The Lancet, 390(10096), pp. 760-772, DOI: 10.1016/s0140-6736(17)31470-8.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2017
Authors
10
Datasets
0
Total Files
0
Language
English
Journal
The Lancet
DOI
10.1016/s0140-6736(17)31470-8
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access