menu_book Explore the article's raw data

An introduction to persistent homology for time series

Abstract

Topological data analysis (TDA) uses information from topological structures in complex data for statistical analysis and learning. This paper discusses persistent homology, a part of computational (algorithmic) topology that converts data into simplicial complexes and elicits information about the persistence of homology classes in the data. It computes and outputs the birth and death of such topologies via a persistence diagram. Data inputs for persistent homology are usually represented as point clouds or as functions, while the outputs depend on the nature of the analysis and commonly consist of either a persistence diagram, or persistence landscapes. This paper gives an introductory level tutorial on computing these summaries for time series using R, followed by an overview on using these approaches for time series classification and clustering. This article is categorized under: Statistical Learning and Exploratory Methods of the Data Sciences > Clustering and Classification Data: Types and Structure > Time Series, Stochastic Processes, and Functional Data Applications of Computational Statistics > Computational Mathematics

article Review
date_range 2021
language English
link Link of the paper
format_quote
Sorry! There is no raw data available for this article.
Loading references...
Loading citations...
Featured Keywords

classification
clustering
persistence diagram
persistence landscape
persistent homology
statistical analysis
Citations by Year

Share Your Research Data, Enhance Academic Impact