0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis research attempts to address the gap between the theoretical fundamentals of hybrid renewable energy systems and their practical implementation at different scales through a new Conceptual Hybrid Energy Model (COHYBEM). The main objective was to develop a multi-variable model to allow a new complete and comprehensive techno-economic analysis of the performance of possible hybrid renewable power systems at different scales. The purpose is to evaluate the influence of critical parameters by changing key parameters in the developed model and identifying their impacts. It covers big data analyses, simulation and optimization of hybrid energy solutions, combining wind, solar and hydropower energy sources with the energy storage technology of pump hydropower storage. The research also denoted the Pareto front with the increasing power installed, for the maximum efficiency and total satisfied demand by Wind + PVSolar and by Hydro converges to a higher percentage, while a minimum waste by Wind + PVSolar is also progressing towards the increasing scales. In terms of investment costs for the 243 analyzed case studies, it varies between 45 k€ to 2.1 M€, resulting in a net present value (NPV) between 18 and 600 k€ and a payback period around 6–17 years depending on the power scale analyzed.
Helena M. Ramos, J. Pína, Oscar Coronado-hernández, Modesto Pérez‐Sánchez, Aonghus McNabola (2024). Conceptual Hybrid Energy Model for Different Power Potential Scales: Technical and Economic Approaches. Renewable Energy, pp. 121486-121486, DOI: 10.1016/j.renene.2024.121486.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
Renewable Energy
DOI
10.1016/j.renene.2024.121486
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access