menu_book Explore the article's raw data

Phonon-drag in a graphite channel buried in diamond

Abstract

While the phonon-drag effect can induce large Seebeck coefficients, it is associated with large mean free path phonons present in the vicinity of the maximum in temperature of the lattice thermal conductivity. In this paper, we initiate a new route by searching for the mutual drag between the electron and phonon-drag gases at the interface between two different media. In that respect, the temperature studies of the conductance and Seebeck coefficient of a model system consisting of an electrically conductive graphitic channel buried beneath the surface of a diamond crystal are shown. The observed behaviour is very similar to that of graphite, with a typical negative peak associated with the phonon-drag effect. Interestingly, this phonon-drag peak of the buried graphitic channel appears at a significantly higher temperature than that in pure graphite.

article Article
date_range 2024
language English
link Link of the paper
format_quote
Sorry! There is no raw data available for this article.
Loading references...
Loading citations...
Featured Keywords

Implanted diamond
Buried channel
Seebeck
Electron-phonon interaction
Citations by Year

Share Your Research Data, Enhance Academic Impact