menu_book Explore the article's raw data

Circularly polarized blue fluorescence based on chiral heteroleptic six-coordinate bis-pyrazolonate-Zn2+ complexes

Abstract

Applying molecular design to chiral organo-Zn2+ complexes, a new pair of chiral heteroleptic bis-pyrazolonate-Zn2+ enantiomers [Zn(PMBP)(2)(1R,2R-Chxn)] (R,R-Zn2+; HPMBP = 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone and 1R,2R-Chxn = (1R,2R)-cyclohexane-1,2-diamine) and [Zn(PMBP)(2)(1S,2S-Chxn)] (S,S-Zn2+; 1S,2S-Chxn = (1S,2S)-cyclohexane-1,2-diamine) have been synthesized and characterized in terms of photophysical and thermodynamic properties. In addition to a small Flack parameter (0.05(3)) associated with the solid-state elucidation of S,S-Zn2+, the circular dichroism (CD) and circularly polarized light (CPL) spectra for the chiral Zn2+ enantiomers show perfect mirror symmetry, establishing that the enantiopure 1,2-diamines successfully induce the optical isomerism of R,R-Zn2+ and S,S-Zn2+. As a result of the combined strong chiral induction capability of chiral 1,2-diamines and excellent photophysical properties of the pyrazolone ligand (PMBP)-, the two Zn2+ enantiomers exhibit high-quality pure blue fluorescence (Phi(PL) = 9-10%) and significant CPL activity (|g(lum)| = 0.0065-0.0068). The heteroleptic strategy adopted in this study offers a new route to develop high-performance chiroptical luminophores.

article Article
date_range 2024
language English
link Link of the paper
format_quote
Sorry! There is no raw data available for this article.
Loading references...
Loading citations...
Featured Keywords

No keywords available for this article.

Citations by Year

Share Your Research Data, Enhance Academic Impact