Experimental Investigation on Backstepping Control of DC -DC Buck Converter Fed Constant Power Load
Abstract
In contemporary energy production, there's been a significant transition from coal-centric methods to renewable energy sources (RES) that emit zero pollutants. As RES becomes more integral to expansive power systems, there's a growing need for regulated power electronic systems. When integrated with microgrids, RES often face stability challenges, being represented in DC microgrids as a constant power load (CPL). The DC-DC converters designed to operate these CPL loads are affected by switching irregularities and the destabilizing effects of CPL, leading to broader power system instability. This study introduces a backstepping control (BSC) approach for a DC-DC buck converter operating with CPL. Through extensive experimental investigations, the effectiveness of the proposed controller under various test conditions, contrasting its results with the cascade PI controller have been evaluated. The outcomes reveal that the proposed backstepping control technique enhances both the dynamic and steady-state performance of the DC-DC buck converter-CPL system, especially during extensive fluctuations in the load power.