menu_book Explore the article's raw data

Risk Identification and Safety Assessment of Human-Computer Interaction in Integrated Avionics Based on STAMP

Abstract

To solve the problem of risk identification and quantitative assessment for human-computer interaction (HCI) in complex avionics systems, an HCI safety analysis framework based on system-theoretical process analysis (STPA) and cognitive reliability and error analysis method (CREAM) is proposed. STPA-CREAM can identify unsafe control actions and find the causal path during the interaction of avionics systems and pilot with the help of formal verification tools automatically. The common performance conditions (CPC) of avionics systems in the aviation environment is established and a quantitative analysis of human failure is carried out. Taking the head-up display (HUD) system interaction process as an example, a case analysis is carried out, the layered safety control structure and formal model of the HUD interaction process are established. For the interactive behavior Pilots approaching with HUD, four unsafe control actions and 35 causal scenarios are identified and the impact of common performance conditions at different levels on the pilot decision model are analyzed. The results show that HUD's HCI level gradually improves as the scores of CPC increase, and the quality of crew member cooperation and time sufficiency of the task is the key to its HCI. Through case analysis, it is shown that STPA-CREAM can quantitatively assess the hazards in HCI and identify the key factors that impact safety.

article Article
date_range 2024
language English
link Link of the paper
format_quote
Sorry! There is no raw data available for this article.
Loading references...
Loading citations...
Featured Keywords

Analytical models
Aerospace electronics
Process control
Hazards
Atmospheric modeling
Task analysis
Statistical analysis
avionics
human-computer interaction (HCI)
safety assessment
system-theoretic accident model and process
human reliability analysis
Citations by Year

Share Your Research Data, Enhance Academic Impact