menu_book Explore the article's raw data

Existence Theorem for Sub-Lorentzian Problems

Abstract

In this paper, we prove the existence theorem for longest paths in sub-Lorentzian problems, which generalizes the classical theorem for globally hyperbolic Lorentzian manifolds. We specifically address the case of invariant structures on homogeneous spaces, as the conditions for the existence theorem in this case can be significantly simplified. In particular, it turns out that longest paths exist for any left-invariant sub-Lorentzian structures on Carnot groups.

article Article
date_range 2024
language English
link Link of the paper
format_quote
Sorry! There is no raw data available for this article.
Loading references...
Loading citations...
Featured Keywords

Lorentzian geometry
Sub-Lorentzian geometry
Anti-norm
Causal structure
Existence theorem
Filippov's theorem
Carnot group
Citations by Year

Share Your Research Data, Enhance Academic Impact