menu_book Explore the article's raw data

Hand Tracking: Survey

Abstract

Hand tracking is relevant to such a variety of applications including human-robot interaction (HRI), human-computer interaction (HCI), virtual reality (VR), and augmented reality (AR). Accurate and robust hand tracking however is challenging due to the intricacies of dynamic motion within small space and the complex interactions with nearby objects, coupled with the hurdles in real-time hand mesh reconstruction. In this paper, we conduct a comprehensive examination and analysis of existing hand tracking technologies. Through the review of major works in the literature, we have discovered numerous studies employing a diverse array of sensors, leading us to propose their categorization into seven types: vision, soft wearable, encoder, magnetic, inertial measurement unit (IMU), electromyography (EMG), and the fusion of sensor modalities. Our findings indicate that no singular solution surpasses all others, attributing to the inherent limitations of using a single sensor modality. As a result, we assert that integrating multiple sensor modalities presents a viable path toward devising a superior hand tracking solution. Ultimately, this survey paper aims to bolster interdisciplinary research efforts across the spectrum of hand tracking technologies, thereby contributing to the advancement of the field.

article Article
date_range 2024
language English
link Link of the paper
format_quote
Sorry! There is no raw data available for this article.
Loading references...
Loading citations...
Featured Keywords

Augmented reality
computer vision
data gloves
exoskeleton gloves
hand tracking
human-computer interaction
human-robot interaction
mixed reality
virtual reality
wearable devices
Citations by Year

Share Your Research Data, Enhance Academic Impact