menu_book Explore the article's raw data

Intelligent condition monitoring with CNN and signal enhancement for undersampled signals

Abstract

High-frequency signals like vibration and acoustic emission are crucial for condition monitoring, but their high sampling rates challenge data acquisition, especially for online monitoring. Our research developed a novel method for condition identification in undersampled signals using a modified convolutional neural network integrated with a signal enhancement approach. A frequency-domain filtering is applied to suppress similar sidebands and obtain more discriminative features of different conditions, followed by an interpolation-based upsampling in the time domain to restore the signal length and strengthen the low-frequency harmonic information. Enhanced signals are converted into two-dimensional grayscale images for neural network analysis. Tested on bearing datasets and real-world data from regenerative thermal oxidizer lift valve leakage, our method effectively extracts features from low-frequency signals, achieving over 95% fault identification accuracy.

article Article
date_range 2024
language English
link Link of the paper
format_quote
Sorry! There is no raw data available for this article.
Loading references...
Loading citations...
Featured Keywords

Condition monitoring
Undersampled signals
Convolutional neural network
Signal enhancement
Citations by Year

Share Your Research Data, Enhance Academic Impact