menu_book Explore the article's raw data

Event-Triggered Control From Data

Abstract

We present a data-based approach to design event-triggered state-feedback controllers for unknown continuous-time linear systems affected by disturbances. By an event, we mean state measurements transmission from the sensors to the controller over a digital network. By exploiting a sufficiently rich finite set of noisy state measurements and inputs collected off-line, we first design a data-driven state-feedback controller to ensure an input-to-state stability property for the closed-loop system ignoring the network. We then take into account sampling induced by the network and we present robust data-driven triggering strategies to (approximately) preserve this stability property. The approach is general in the sense that it allows deriving data-based versions of various popular triggering rules of the literature. In all cases, the designed transmission policies ensure the existence of a (global) strictly positive minimum interevent time thereby excluding Zeno phenomenon despite disturbances. These results can be viewed as a step towards plug-and-play control for networked control systems, i.e., mechanisms that automatically learn to control and to communicate over a network.

article Article
date_range 2024
language English
link Link of the paper
format_quote
Sorry! There is no raw data available for this article.
Loading references...
Loading citations...
Featured Keywords

Noise measurement
Sensors
Data models
Closed loop systems
Linear systems
Asymptotic stability
Actuators
Data-driven control
event-triggered control
learning systems
linear matrix inequalities
networked control systems
robust control
Citations by Year

Share Your Research Data, Enhance Academic Impact