menu_book Explore the article's raw data

Control-Barrier-Function-Based Design of Gradient Flows for Constrained Nonlinear Programming

Abstract

This article considers the problem of designing a continuous-time dynamical system that solves a constrained nonlinear optimization problem and makes the feasible set forward invariant and asymptotically stable. The invariance of the feasible set makes the dynamics anytime, when viewed as an algorithm, meaning it returns a feasible solution regardless of when it is terminated. Our approach augments the gradient flow of the objective function with inputs defined by the constraint functions, treats the feasible set as a safe set, and synthesizes a safe feedback controller using techniques from the theory of control barrier functions. The resulting closed-loop system, termed safe gradient flow, can be viewed as a primal-dual flow, where the state corresponds to the primal variables and the inputs correspond to the dual ones. We provide a detailed suite of conditions based on constraint qualification under which (both isolated and nonisolated) local minimizers are asymptotically stable with respect to the feasible set and the whole state space. Comparisons with other continuous-time methods for optimization in a simple example illustrate the advantages of the safe gradient flow.

article Article
date_range 2024
language English
link Link of the paper
format_quote
Sorry! There is no raw data available for this article.
Loading references...
Loading citations...
Featured Keywords

Optimization
Heuristic algorithms
Stability analysis
Asymptotic stability
Dynamical systems
Linear programming
Convergence
Control barrier functions
gradient flows
nonlinear programming
optimization
projected dynamical systems
Citations by Year

Share Your Research Data, Enhance Academic Impact