menu_book Explore the article's raw data

State Observer-Based Composite Adaptive Fault-Tolerant Fuzzy Control for Uncertain Nonlinear Systems with Quantized Inputs

Abstract

This work researches the issue of adaptive fault-tolerant fuzzy tracking control for a class of nonlinear systems in strict-feedback form with quantized inputs. The fuzzy logic systems are utilized to approximate unknown functions, and a fuzzy state observer is built to estimate the unavailable states. Meanwhile, an improved hysteresis quantizer is introduced to achieve the quantized inputs for saving communication resources. To improve the approximation capacities of fuzzy logic systems, the compensated tracking errors and the prediction errors are used to construct the adaptive laws parameters. Furthermore, a composite adaptive fault-tolerant fuzzy control strategy is developed, which can guarantee proper operations of the systems when encountering actuator faults, and overcome the issue of explosion of complexity in the backstepping approach. It is strictly demonstrated that the system output can follow a desired signal within a small error zone and all signals of the closed-loop system are bounded. Finally, the simulation results are given to confirm the validity of the presented control strategy.

article Article
date_range 2024
language English
link Link of the paper
format_quote
Sorry! There is no raw data available for this article.
Loading references...
Loading citations...
Featured Keywords

Fuzzy logic systems
Fuzzy state observers
String parallel estimation models
Composite fuzzy adaptive
Fault-tolerant
Citations by Year

Share Your Research Data, Enhance Academic Impact